INTRINSIC MIGRATION APTITUDES OF ALKYL GROUPS IN A PINACOL REARRANGEMENT

Eckehardt Wistuba and Christoph Rüchardt*

Chemisches Laboratorium, Universität Freiburg, Albertstr.21, D-7800 Freiburg

<u>Summary</u>: From rates of solvolysis of substituted cis-2-tosyloxy-cyclopentanols $\underline{3}$ in sodium acetate buffered acetic acid the following relative migration aptitudes were deduced: H(171); CH₃(6.7); C₂H₅(9.7); 2-C₃H₇(5.2); t-C₄H₉(2.5); C₆H₅(62).

In the course of a systematic investigation¹⁻³) of intrinsic migration aptitudes⁴) we became interested in the relative migration rates of a sextet rearrangement in which alkyl groups migrate from carbon to carbon. For the simple model reaction (1)

the order methyl > ethyl > i-propyl > t.butyl was suggested by MINDO/3 or ab initio calculations using the STO-3G basis set⁵⁾. The principal difficulties in determining meaningful intrinsic migration aptitudes in carbenium ion rearrangements in general⁵⁾ and in the pinacol rearrangement in particular⁶⁾ have been discussed recently. In order to obtain migration aptitudes free from complications by preequilibria or conformational equilibria we decided to measure the kinetics of the solvolysis of a series of 1-alkyl-cis-2-tosyloxy-cyclopentanols $\underline{3}$ in NaOAc buffered acetic acid⁷⁾. For comparison $\underline{3a}$ and The model compounds $\underline{3}\underline{a} - \underline{f}$ were prepared by cis-hydroxylation of the cyclopentenes $\underline{1}^{8}$ and selective tosylation of the more reactive secondary hydroxy group in $\underline{2}^{8}$ (see eq.2).

R = a) H b) CH_3 c) C_2H_5 d) $2-C_3H_7$ e) $t-C_4H_9$ f) C_6H_5

In these compounds the groups R are placed in an anti position to the leaving tosyloxy group, ideal for neighbouring group participation as shown in eq. 3).

Equation 3) is qualitatively supported by product analyses^{7,10,11)}. The results of the kinetic experiments are shown in the table. The large influence of R in β -position to the leaving group in $\underline{3}$ on the solvolysis rate is a strong indication for neighbouring group participation. It is concluded therefore from these solvolysis rates that the migration aptitude strongly decreases in the series H > phenyl > alkyl. The migration aptitudes of the alkyl groups CH₃ < C₂H₅ > C₃H₇ > t-C₄H₉ are very similar to those found in the isonitrile rearrangement¹⁾ and close to those of the Curtius rearrangement¹⁾, but opposite to those of the Beckmann and Criegee rearrangements¹⁾. They are in qualitative agreement with the prediction of theory⁵⁾.

TableRates of solvolysis of cis-2-tosyloxy-cyclopentanols $\underline{3}$ (0.035 m)in acetic acid containing 0.035 m NaOAc¹²

No.	R	10 ⁵ k ₁ (s ⁻¹) ^{a)}	range ^{b)}	TosOH ^{C)}
<u>3a</u>	Н	171.4 <u>+</u> 2.47	87%	85%
<u>3</u> b	CH ₃	6.74 <u>+</u> 0.69	80%	918
<u>3</u> ⊆	^С 2 ^Н 5	9.68 <u>+</u> 0.26	90%	98%
<u>3₫</u>	2-C3H7	5.16 <u>+</u> 0.02	83%	97%
<u>3e</u>	t-C4H9	2.52 <u>+</u> 0.02	87%	95%
<u>∃f</u>	C ₆ ^H 5	61.8 <u>+</u> 0.05	938	96%

a) + experimental error of double determinations

b) range of linear first order plot

c) final titer of TosOH

We conclude from these results:

- The difference in the order of alkyl group migration aptitudes between the Beckmann and Criegee rearrangements on the one hand and the Curtius and isonitrile rearrangements on the other¹⁾, is not due to the fact that in the former reactions charged species are rearranging and in the latter uncharged ones.
- 2) The pinacol rearrangement passes a tight transition state in which the migrating alkyl groups are more closely resembling a pentacoordinated carbonium center like in $\underline{4a}$ than a trivalent carbonium center as in $\underline{4a}^{1-3}$.

The financial support of this work by the Fonds der Chemischen Industrie is gratefully acknowledged.

References:

- 1) H.Langhals, G.Range, E.Wistuba and C.Rüchardt, Chem.Ber. in print and references cited there.
- 2) H.Langhals and C.Rüchardt, Chem.Ber. in print
- 3) E.Wistuba and C.Rüchardt, Tetrahedron Lett. in print
- 4) cf. G.W.Wheland, Advanced Organic Chemistry, 3rd ed. p.573, John Wiley Inc. New York 1960.

- 5) M.Saunders, J.Chandrasekhar and P.v.R.Schleyer in Rearrangements in Ground and Excited States, Vol.1, p.1 and p.35, Academic Press, New York 1980.
- 6) a) J.March, Advanced Organic Chemistry, 1.ed. p.787, McGraw Hill Book Co. New York 1968.
 - b) T.H.Lowry and K.Schueller Richardson, Mechanismen und Theorien der Organischen Chemie, 1.ed., p.264, Verlag Chemie, Weinheim 1980.
 - c) F.A.Carey and R.J.Sundberg, Advanced Organic Chemistry, 1.ed. Part B, p.336, Plenum Press, New York 1977.
- 7) For examples of this type of pinacol rearrangement in natural products synthesis see: G.Büchi, W.Hofheinz and J.v.Paukstelis, J.Am.Chem.Soc. <u>88</u>, 4113 (1966); D.M.Mac Sweeney and R.Ramage, Tetrahedron <u>27</u>, 1481 (1971).
- 8) <u>cis-hydroxylation</u>: K.B.Wiberg and K.A.Saegebarth, J.Am.Chem.Soc. <u>79</u>, 2822 (1957);

<u>tosylation</u>: To a stirred solution of 25 mmol $\underline{2}$ in 10 ml anhydrous pyridine 25 mmol TosCl were added slowly at 3-5°C. After 3h stirring the solution was diluted with 50 ml ether. 2n HCl was added with shaking till pH 4 was reached. Then the ether solution was washed neutral at 0°C with soda and water and dried over Na₂SO₄. The ether was evaporated and the residue purified by chromatography over silicagel in CH₂Cl₂-pentane (60:40). After elution of TosCl the compounds $\underline{3}$ were eluted with ether. The crude products were recrystallized from pentane at -20°C. All compounds were characterised by spectral means and by elemental analysis⁹.

- 9) Dissertation E.Wistuba, Univ. Freiburg, 1976.
- 10) No quantitative product analyses were performed because of strong discoloration of the reaction solutions. In a preparative experiment 35% $\underline{5c}$ were isolated from $\underline{3c}$, however.
- 11) See P.D.Bartlett and A.Barley, J.Am.Chem.Soc. <u>60</u>, 2416 (1938) for complications by competing elimination in the pinacol rearrangement of trans-1.2-dimethyl-cyclopentane-diol.
- 12) The kinetics were followed by titration of the NaOAc concentration with standard HClO₄ cf. S.Winstein, E.Grunwald and L.I.Ingraham, J.Am.Chem.Soc. <u>70</u>, 821 (1948).

(Received in Germany 28 July 1981)